

Integrated Systems Engineering

Development, Modeling, and Optimization of Microelectronic Processes, Devices, Circuits, and Systems

MDRAW NMOS exercise example

(NMOS MDRAW)

March, 2004

What is MDRAW

- MDRAW is the ISE 2D structure, doping and mesh editor.
- MDRAW is a front end to the ISE meshing engine MESH.
- With MDRAW you create device geometries by simply drawing them.
- With MDRAW you define analytic doping profiles interactively.
- With MDRAW you define meshing strategies interactively.
- With MDRAW you can edit and re-mesh device structures from the process simulation.

MDRAW Basics

Input Decks

- 1. MDRAW stores the device structure information in two separate files. The geometrical information is stored in a boundary file which has a name [basename].bnd.
- 2. The information about doping profiles and meshing strategies is stored in a command file which has a name [basename].cmd.

Output Files

- The final structure files that are loaded into the device simulator DESSIS are the grid file with a name [basename].grd and the data file with a name [basename].dat.
- The grid file contains the information about all the verticies (nodes) in the structure, their connectivity and what region and material they belong to.
- The data file contains the information about all the data sets, e.g., doping profiles, which are defined on those nodes.

MDRAW Basics

• Launching MDRAW

- Launch MDRAW from a command prompt with:
 > mdraw
- Launching MDRAW with an existing structure
 - Launch MDRAW from the command prompt with:
 > mdraw [basename]

TARGET

Use Mdraw to define one 100A NMOS device withtout using DIOS or Floops.

Open New Project : NMOS_MDRAW

MDRAW Boundary Editor

Edit Mdraw Boundary

MDRAW Mdraw: The Boundary Editor Interface

Exact Coordinate Mode

In MDRAW you can draw free-hand. This is the default mode. However, in • most cases it is advantageous to place points accurately. It is thus recommended to activate the Exact Coordinates option from the **Preference Area**. When this option is checked, a dialog window will open after each mouse placement in which you can specify the exact placement

coordinates.

Setting the Current Material

 To select the material for consecutive operations, open the Materials pulldown menu from the Menu Bar. Then click on the desired material, e.g., Silicon.

Adding a Rectangle

- We are now creating the silicon substrate:
 - Select Add Rectangle from the **Toolbox**.

Adding the Gate Oxide

- We are now adding a 100Å gate oxide layer:
 - Set the current material to SiO2. Click here for details
 - Select Add Rectangle from the **Toolbox**.

Zooming

• To see the gate oxide layer, select Zoom from the **Toolbox** and drag the pointer to draw a rectangle covering the approximate area of the interest. Click here for details on re-centering the view

Adding the Gate Poly Silicon

- We are now adding the gate polysilicon layer:
 - Set the current material to PolySilicon.
 - Select Add Rectangle from the **Toolbox**.

olySilicon

MDRAW

- 🗆 ×

MDRAW Adding Non-Rectangular Regions : Ni Spacer

- We are now adding the nitride spacers.
 - Adding the first rectangular region. Then placing additional points and moving them to create rounded corners;

Add point and Move point

MDRAW

• Select Add Point from the **Toolbox** and click on several locations at the top and left edges of the nitride region.

Undo and Redo

 Free-hand operations often need to be redone a few times to get them right. Open the Edit pull-down menu from the Menu Bar and select Undo or Redo as many times as needed.

Naming Regions

- By default, MDRAW assigns names to regions in the following fashion: Region_1, Region_2, Region_3, and so forth. Here is how you can change region names:
- Select Information from the **Toolbox** and click on a layer of interest. A **Region** Information dialog window will appear which shows the material and the regionnames.

Setting Contacts

• Declare a contact by selecting Add Contact from the **Contacts Area**. A **Contact Information** dialog window will appear. Enter the name gate and click OK.

Active Contact

- To change the active contact, open the pull-down menu by clicking on the black triangle and select one
- To select edges to be added to the currently active contact, select Set/Unset Contact from the **Toolbox** and click on the respective edges. A thick red line indicates the active contact.

Saving the Boundary File

• The information about the device geometry is stored in a boundary file which has the extension *.bnd. To save a boundary file, open the File pull-down menu from the Menu Bar and select Save or Save As. If

Save as "mdraw_mdr.bnd"

MDRAW

A part of mdraw_mdr.bnd

D:/training_isedb/GENESIS_examples/NMOS_MDRAW/mdraw_mdr.bnd	
Eile Edit Format Settings Help	
DF-ISE text	
<pre># filename: D:\training_isedb\GENESIS_examples\NMOS_MDRAW\mdraw_m</pre>	4r
# written by the library Delaunay	
Info {	
version = 1	
type = boundary	
dimension = Z	
nb_vertices = 20	
nb_edges = 24	
nb_races = 0	
nb_erements = 9	
ngions = ["Substrate" "Degion 1" "Begion 2" "Degion 2" "Degion 2"	10
meterials = [Silicon Ovide DolySi Si3N4 Si3N4 Contect Contect	-
	-
Data (
CoordSystem (
translate = [0 0 0]	
transform = [1 0 0 0 0 1 0 -1 0]	
}	
Vertices (20) {	
-1.5 3	
-1.5 0	
1.5 3	
1.5 0	
10	
-1 0	
-1 -0.01	
	•

Save the Script File

• The Script file can be parameteried.

 You can run "Mdraw –L mdraw_mdr.tcl" to produce the mdraw_mdr.bnd

MDRAW Doping Editor

MDRAW Adding a Constant Substrate Doping Profile

- Select Add Constant P. from the **Toolbox**.
- Press and hold the left mouse button and drag the pointer to draw a rectangle covering the approximate area of the substrate, then release the mouse button.

Add Constant P.	Constant Profiles	
Add SubMesh	1.6 1.8 A	
	Profile Name Substrate doping	
Add Multibox		
	Constant Function	
Information 0.2	Concentration it a. 017 Species	Boron Active Concentratio
Sample 0.4	Concentration (1994) Species	BoronActiveConcentratio
Zoom 1 0.6	Evaluation Window	
	X0 - X0 - X0 - 0.0 X1	1.5 Y1 T3.0
12		
	Decay Error Function	
Build Mesh		
	📕 🧹 Decay Factor 👔	
- A Shew-Grid	- Options	
F Show Rulers	CI Replace	
Show Final Mesh		
Show Refinement 2.6		
Show Analytical P.		
Show Functions		Cancel
☐ Show Palette 32		
Click the "Exact coordinates'		
н		

MDRAW Adding a Constant Poly Doping Profile

- Select Add Constant P. from the **Toolbox**.
- Press and hold the left mouse button and drag the pointer to draw a rectangle covering the approximate area of the substrate, then release the mouse button.

mdraw_mdr.bnd		
Add Analytical-P	Eile Edit View Arrange Mesh Eunctions	Constant Profiles
Add SubMesh		
Add Refinement		Profile Name Poly doping
Etilt inieriaces	-0.2	
Delete		Constant Function
Information	02	Concentration 1e+020 Species ArsenicActiveConcentrat
Selection	0.4	
Zoom	0.6	Evaluation Window
	08	
		XU -0.5 YU -0.2 X1 0.5 Y1 -0.01
	12	- Decey Error Eurotion
Build Mesh	1.4	Decay End Function
_Zoom Out	1.6	Decay Factor 👔
Equal Scales	1.8	
Exact Coordinates		Options
Show Rulers	22	E Poplaça
Show Final Mesh	24	r neplace
Show Refinement	20	
Show Analytical P.	20	
Show Functions		OK
☐ Show Palette ☐ Show SubMeshes		
♦ Boundary	0.52699 -0.01650:	
J ↔ Doping		

MDRAW Adding an Analytical Doping Profile : Source

- Select Add Analytical P. from the **Toolbox**.
- Press and hold the left mouse button and drag the pointer to draw a line from left to right along the approximate extension of the source contact, then release the mouse.

MDRAW Adding an Analytical Doping Profile : Drain

- Select Add Analytical P. from the **Toolbox**.
- Press and hold the left mouse button and drag the pointer to draw a line from left to right along the approximate extension of the source contact, then release the mouse.

Build Mesh & Show Mesh

Global Refinement

Step 1 : Puşh this

Channel Multibox

• Select Add Multibox from the **Tool Box**

Poly Multibox

• Select Add Multibox from the **Tool Box**

Show Mesh Numbers

Save the Command file

Mdraw_mdr.cmd (1)

```
Title "Untitled"
```

MDRAW

Definitions {

```
# Refinement regions
  Refinement "Default Region"
   MaxElementSize = (0.3 \ 0.3)
   MinElementSize = (0.005 \ 0.005)
   RefineFunction = MaxTransDiff(Variable =
"DopingConcentration", Value = 1)
  Multibox "Channel box"
   MaxElementSize = (0.07 \ 0.03)
   MinElementSize = (0.005\ 0.0002)
   Ratio = (1 \ 1.2)
  Multibox "Poly box"
   MaxElementSize = (0.1 \ 0.02)
   MinElementSize = (0.005 \ 0.0003)
   Ratio = (1 - 1.25)
```

```
# Profiles
  Constant "Substrate_doping"
   Species = "BoronActiveConcentration"
   Value = 1e+017
  Constant "Poly_doping"
   Species = "ArsenicActiveConcentration"
   Value = 1e+020
  AnalyticalProfile "Source_doping"
   Species = "ArsenicActiveConcentration"
   Function = Gauss(PeakPos = 0, PeakVal = 1e+020.
ValueAtDepth = 1e+017, Depth = 0.3)
   LateralFunction = Gauss(Factor = 0.8)
  AnalyticalProfile "Drain doping"
   Species = "ArsenicActiveConcentration"
   Function = Gauss(PeakPos = 0, PeakVal = 1e+020,
ValueAtDepth = 1e+017, Depth = 0.3)
   LateralFunction = Gauss(Factor = 0.8)
```


Mdraw_mdr.cmd (2)

```
Constant "Poly_doping"
Placements {
 # Refinement regions
  Refinement "Default Region"
                                                                Reference = "Poly_doping"
                                                                Replace
                                                                EvaluateWindow
   Reference = "Default Region"
   # Default region
                                                                  Element = rectangle [(-0.5 - 0.2), (0.5 - 0.01)]
                                                                  DecayLength = 0
  Multibox "Channel box"
   Reference = "Channel box"
                                                               AnalyticalProfile "Source_doping"
   RefineWindow = rectangle [(-0.55, 0), (0.55, 0.3)]
                                                                Reference = "Source doping"
  Multibox "Poly box"
                                                                ReferenceElement
   Reference = "Poly_box"
                                                                  Element = line [(-1.50), (-0.50)]
   RefineWindow = rectangle [(-0.5, -0.2), (0.5, -0.01)]
                                                                  Direction = positive
 #Profiles
  Constant "Substrate_doping"
                                                               AnalyticalProfile "Drain_doping"
   Reference = "Substrate_doping"
                                                                Reference = "Drain_doping"
   EvaluateWindow
                                                                ReferenceElement
    Element = rectangle [(-1.50), (1.53)]
                                                                  Element = line [(0.50), (1.50)]
    DecayLength = 0
                                                                  Direction = positive
```


Change the Executive mode

Run MDRAW in batch mode

Integrated Systems Engineering Development, Modeling, and Optimization of Microelectronic Processes, Devices, Circuits, and Systems

Copyright © 2003 ISE Integrated Systems Engineering AG

Switzerland	USA	Japan	Taiwan	Korea
ISE Integrated Systems	ISE Integrated Systems	ISE Japan Ltd.	ISE Integrated Systems	ISE Integrated Systems
Engineering AG	Engineering, Inc.	5-1, Marunouchi 1-Chome	Engineering AG, Taiwan Branch	Engineering AG, Korea Branch
Balgriststrasse 102	111 North Market Street, Suite 710	Chiyoda-ku	2nd Floor, No. 15, Lane 6	Jeongjoo Building, Suite 602
CH-8008 Zürich	San Jose, CA 95113	Tokyo 100-0005	Jinshan 6th Street	1451-38 Seocho-dong, Seocho-ku
Switzerland	USA	Japan	Hsinchu 300, Taiwan	Seoul 137-866, Korea
Phone: +41 1 389 9700	Phone: +1 408 918 6300	Phone: +81 3 5220 3543	Phone: +886 3 567 0500	Phone: +82 2 525 9117
Fax: +41 1 389 9797	Fax: +1 408 918 6306	Fax: +81 3 3282 7623	Fax: +886 3 579 0546	Fax: +82 2 525 0931
Email: sales.eu@ise.com	Email: sales.us@ise.com	Email: sales.jp@ise.com	Email: sales.tw@ise.com	Email: sales.kr@ise.com