器件模拟集成化工具 ISE TCAD 使用简介

国防科技大学计算机学院微电子研究所

池雅庆

Email:yqchi@nudt.edu.cn QQ:34943992

ISE TCAD 部署与运行方法	1
器件描述: mdraw	6
2. 1 启动	6
2. 2 构造二维剖面图	8
2. 3 掺杂	15
2. 4 产生网格与调整设计	
器件模拟: Dessis	24
3.1 模拟输入文件	
3. 2 模拟过程	
可视化	
4.1 曲线可视化・Inspect	<u>2</u> 0 29
4. 2 分布可视化: Picasso	
	 ISE TCAD部署与运行方法 器件描述:mdraw 2.1 启动 2.2 构造二维剖面图 2.3 掺杂 2.4 产生网格与调整设计 器件模拟:Dessis

1. ISE TCAD 部署与运行方法

部署:

- 1. 安装 EXCEED Xserver for win32;
- 2. 拷贝文件夹"ISE"到C盘根目录下;
- 3. 拷贝文件夹"ISE_DATA"到E盘根目录下;
- 4. 添加系统环境变量如下(或确保系统环境变量中有如下内容,参照环境变量.txt):
 Path 项中添加: %TEC80HOME%\BIN;C:\ISE\bin 新建项:

ISEDB E:\ISE_DATA ISERELEASE 7.0 ISEROOT C:\ISE TEC80HOME C:\ISE\TEC80 FP_NO_HOST_CHECK NO DISPLAY 此电脑的计算机名:0.0

(点"我的电脑"的"属性"中"计算机名",即可看到计算机名)

5. 导入文件夹"破解"中所有注册表信息(双击即可导入)。

运行(后面以一个例子来说明使用方法,该例子计算一个 VDMOS 器件的阈值电压):

- 1. 启动 exceed;
- 2. 启动 C:\ISE\BIN\GENESISEe,也可为其添加一个快捷方式。
- 3. 启动后,出现窗口如图1或图2:

🎀 GENESISe@yqchi v	7.0 (7.0.9)	6	. ()封新邮件		_ 8 ×
Windows Specia	l Colors					Help
	HI Luy Teppol Heaso Pruly			PDF Manua	,	<u> </u>
Status		SE Projects				X
遼	File Edit Special					
Scheduler	Path			Pa	atterns	
Forming self	Projects COPED_OBJECT_cyq A seu advanced_d-Vd Seu Example_Library_7.0 lnk Comparison Applications Applications Applications Applications Applications Applications Ac BREAKDOWN BREAKDOWN A dd anyman	A ¹ Name Type	Size Modified	Owner Group	Mode	
Fernily fab	Working area	-				

图 1 GENESISe 窗口 1

图 2 GENESISe 窗口 2

4. 打开 ISE Projects 窗口(双击"Projects"图标,左上角),在左边树状图中右键 点击 Example_Library_7.0.lnk——Applications——DMOS-Vt,左键点击"duplicate" (如图 3 所示),弹出窗口如图 4 所示,点击"Yes All","Vt"就被复制到 "COPYED_OBJECT_【计算机名】"目录下了,如图 5 所示。右键点击复制后的"Vt", 再左键点击"active"(如图 6 所示),激活这个工程。

我们也可以新建一个工程。在"ISE Projects"子窗口中,可以打开左上角的"File" 菜单,里面的选项可以让我们新建目录,也可以新建工程。新建的工程可以用鼠标 拖到任何一个目录中,也可以按上段讲述的方法激活并编辑。

7/ GENESISe@yqchi v7.0 (7.0.9)	3 . 0 封新邮件	×
le Windows Special Colors	н	lelp
		•
Status File Edit Special	SE Projects X	
Scheduler Path	Patterns	
Projects Froul Bow Projects Projects	Name Type Size Modified Owner Group Mode	
	<u>×</u>	•

图 3 ISE Project

图 4 点击"Yes All"

图 5 复制后的"Vt"

图 6 激活工程

5. 双击主窗口左边第二个图标"Status",出现子窗口如图 7 所示。该窗口右边有 9 个按钮,其中"edit"配置器件结构的描述、模拟过程、结果显示等所有输入文件, "Run all"即开始模拟,"Abort"可以中断模拟。"Deselect"取消该工程的激活状态,等等。

74 GENESISe@yqchi v7.0 (7.0.9)			0 封新邮件		_ 8 ×
Windows Special Colors					Help
	Luy Tepplot Picesso Proyet		PDF Manual		<u> </u>
	IS	E Status Window		X	1
	Comment: Browsing Projects	Desired Control		_	X
File Edit Special		Project Control	Edi	t Save	
			Clea	nup History	
Scheduker Path			Prepr	ocess State Info	
			Abo	ort	
Tuol Flow	Selected project info : Execution completed		Run	All Deselect	
± 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4		Running Jobs			1
Parameter DMC	Node Tool Host	Status Time	Project		
Ope line help: Marking projects status window					
one are note. In forming projects status window					

图 7 Status 窗口

6. 点击"Edit",进入"Vt"工程的修改状态,然后双击主窗口左边的"Tool Flow" 图标,出现工具使用流程窗口,如图 8 所示。该窗口左边显示了本工程使用的工具 和使用流程,右边是本集成环境可以使用的工具,我们可以把右边的工具拖入到左 边的流程中,完成自己的设计。"Vt"这个工程使用了三个工具,另外设置了一个全 局参数。该工程的模拟流程为:

MDraw 把输入的器件二维剖面结构调用 Mesh 工具产生模拟用的离散化网格, 然后 Dessis 模拟器件的工作,统计数据,得到电流、电场等结果,最后用 Inspect 把模拟结果用曲线图显示出来,另外也可以用 picasso 来观察器件内部的电场、电流 分布等情况。我们将在后两节详细讲述这四个工具的使用方法。

全局参数"VDrain"设置了模拟时使用的漏极电压。双击流程图中的"VDrain" 图标,可以看到其初始值,如图 9 所示。双击主窗口中"Parameter"图标,可以对 该参数进行详细设置(如图 10 所示),不再赘述,读者可在该软件的 manual 中找到 其具体使用方法。

图 8 Tool Flow 窗口

Set Parameter Dialog	×
Parameter Name: VDrain	
Default Value: 0.1	
ок	Cancel

图 9 全局参数默认值

图 10 全局参数配置

2. 器件描述: mdraw

2.1 启动

在"ISE Tool Flow Editer"子窗口中将 MDraw 拖入到左边流程图中(工程"Vt"中已 完成)。点击选中左边流程图中的"MDraw"图标,然后点击菜单上的"Edit"-"input" (如图 11),此时弹出子菜单,点击"Boundary"项(如图 12),MDraw 就启动了。如果 点击"Commands"项,会打开"Vt"的掺杂信息与构造网格前对器件各个区域网格大小 的配置文件,默认命名为"mdr.cmd"。MDraw 的主要功能就是将此掺杂与网格配置文件 和器件二维结构框图文件(默认命名为"mdr.bnd")可视化,然后集成了网格产生程序生 产网格文件供后续模拟工具进行模拟。

图 12 启动 MDraw 第二步

MDraw 启动后出现图形界面。图 13 所示为"Vt"打开后出现的 VDMOS 的结构图, 我们将在下一节讲述此 VDMOS 器件结构图的画法。

图 13 MDraw 启动界面

2.2 构造二维剖面图

在前面打开的 MDraw 中,已经有了一个 VDMOS 的二维剖面结构。为更好地说明 使用方法,我们新建一个结构文件(在菜单上选择 "File" - "New",如图 14 所示)。

新建后右边作图区清空,我们重新画一个 VDMOS 的二维截面图。画硅基 MOS 器件的 流程一般是:

- A. 作出器件所在的体 (单晶硅);
- B. 作出栅极下的二氧化硅层;
- C. 作出栅极 (多晶硅);
- D. 作出各个接触点 (contact);
- E. 作出表面上方的硅绝缘层(可省略);
- F. 对各个区域掺杂(下一节介绍)。

下面详细介绍上面流程的实现方法。

首先选择要画的区域使用的材料。点击菜单上的"material",会弹出很多材料供选择, 点击其中的"Silicon",选择器件所在的体为单晶硅,如图 15 所示。

图 15 选择材料

接下来,选择左上按钮中的"Add Rectangle",画体硅矩形(如图 16)。为了精确定义体硅区域,我们选中左下选项中的"Exact Coordinates",如图 17 所示。

现在可以在右边作图区任意拖一个框,此时弹出一个对话框,它会让你填写你所画矩形的精确信息,填写内容如图 18 所示。我们可以将边界坐标定义为区域需要的尺寸大小。

XDime	ensions		×
i	Rectangle dimension	ons	
Left	Q	Right 8	
Тор	Ŭ	Bottom 10	
0	К	ncel Help	

图 18 精确填写体硅的边界坐标

确定后,作图区出现体硅的图形,如图 19 所示。

如果产生的图形位置不便于观察,可以选中左边的"Zoom"按钮放大观察,也可以 点击其下面的"Zoom Out"按钮缩小观察。如果图形位置不正,可以点击菜单中"View" - "Zoom Reset",图形会自动调整到最佳观察位置。

如果产生的图形不合适,可以选中左边的"Delete"按钮,然后再单击作图区中的图形块就可以将该块删除。

如果想修改区域边界,选中左边的"Move Point"按钮,并确保"Exact Coordinates" 项选中。此时将鼠标放在一个边界点上,就会弹出一个对话框(如图 20),此时可以修改该 点坐标,修改后区域形状也随之变化。

如果想作多边形,选中左边的"Multiline"按钮,在右边作图区拖出多边形各条边即可。

如果材料选错且已经作好了图形,可以选中左边的"Change Material"按钮,在菜单上的"Material"中重新选择材料,然后用鼠标点中想要改变材料的区域,此区域的材料就被替换了。

图 19 体硅截面图

Untitled		
2D Cut	File Edit View Smooth Materials	
3D Cut		
Add Point		
Add Rectangle		
Change Material		
Delete	1	
Information	2	
Move Point	Coordinate	
Multiline	S = S = S = S = S = S = S = S = S = S =	
Selection		
Set/Unset Contact	5 X. In Y. In	
Zoom		
Zoom Out		
Preferences	OK Cancel	- 110
🔲 Equal Scales		- 110
🔲 Exact Coordinates		- 110
🔲 Keep Grid Size		- 110
Show Contacts	10 -	
🔟 Show Grid	· · · ·	H
Show Rulers		
🔷 Boundary		

图 20 修改区域边界

作出体硅区域后,接着用上述同样的方法作出栅极下的SiO₂和多晶硅栅极,不妨将SiO₂边界坐标设为(4,-0.06)—(8,0),多晶硅边界坐标设为(4,-0.5)—(8,-0.06)如图 21 所示。

第11页

图 21 作出栅极

最后,我们添加接触点(Contact)作为器件对外的接口电极。点击坐标的"Add Contact" 按钮,弹出一个对话框,将此 Contact 取名为 "source",如图 22 所示。

然后选中"Set/Unset Contact"按钮,将鼠标放在源区的表面点一下,可以看见一根红线 添加到了源区表面,这样就完成了源区接触点的添加如图 23 所示。

如果想在器件上去掉这个 contact,确保坐标下拉框中选择了要去掉的 contact,然后选中 "Set/Unset Contact" 按钮,再用鼠标点一下作图区的该 contact 即可去掉。

如果觉得该 contact 接触面太大,想缩小长度,首先去掉该 contact,然后选中左边的"Add Point"按钮,在源区表面点出两个点,再在这两个点之间放置该 contact 即可,如图 24 所示。 选中"Exact Coordinates"项同样可以精确确定这两个点的坐标。

依照上面的方法,我们在栅极上放置"gate"接触点作为栅电极,在衬底下边沿放置"drain"接触点作为漏电极。

这样,我们就完成了一个 VDMOS 的结构图,如图 25 所示。下一节我们将学习掺杂的 方法。

图 22 新建 contact

图 23 添加 contact 到器件上

图 24 修改 contact 长度

图 25 完成后的结构图

2.3 掺杂

点击 MDraw 左下角的 "Doping" 项, 就可以进入掺杂和建立网格视图(图 26)。如果 还想返回上一步修改结构,可以点 "Doping" 项上面的 "Boundary" 项返回结构视图。

我们需要掺杂产生沟道、源区、漏区,参照"Vt"的掺杂参数,掺杂步骤为:

- A. 衬底掺杂: 掺磷,浓度 4×10¹⁵
- B. 沟道掺杂: 掺硼,浓度1×10¹⁷
- C. 源区掺杂: 掺磷,浓度 2×10¹⁹
- D. 衬底接触(源区左边)掺杂:掺硼,浓度1×10¹⁹
- E. 漏区掺杂: 掺磷,浓度 1×10¹⁹

掺杂视图中左上角有两个按钮,分别是"Add Analytical P."和"add Constant P."。第一 个按钮是为扩散或注入掺杂准备的,主要用于制作源、漏和沟道,使用的时候是用鼠标拖一 根线,杂质就会在这根线的单边或双边按一定的衰减分布。第二个按钮是为在外延时就混合 杂质准备的,主要用于制作掺杂的衬底。

图 26 进入掺杂和建立网格视图

首先进行衬底掺杂。衬底的杂质是制作基片或者外延时就生长的,所以选中"add Constant P."。确保左边的"Exact Coordinates"项选中,然后按住鼠标在作图区随便拖一个框,松开鼠标时会弹出一个对话框,我们填好具体掺杂区域的材料、边界坐标和浓度,为该掺杂取名"substrate",如图 27 所示。

然后进行沟道掺杂。沟道的杂质是扩散进入体硅的。在 VDMOS 中,沟道掺杂在制作好 栅极之后,沟道杂质是通过掺入源区的杂质横向扩散到栅极下面形成的,因此选中"Add Analytical P."按钮。确保左边的"Exact Coordinates"项选中,然后按住鼠标在作图区随便 拖一条线,松开鼠标时会弹出一个对话框,我们填好杂质材料、源区掺杂表面的坐标(线的 起点和终点坐标,注意要为后面的衬底接触掺杂留一定距离)、掺杂浓度、掺杂深度因子 (standard deviation)和横向扩散因子 (lateral factor),为该掺杂取名"channel",如图 28 所示。注意,掺杂深度因子和横向扩散因子需参照 mannual 中计算并填写,也可以先设一个 粗略值,等产生网格图像后,根据图像显示再调整。

根据上面方法,完成其它三种掺杂,掺杂配置分别如图 29-31 所示。最后得到结果如 图 32。注意,给源区掺杂掺杂时,深度和横向扩散长度适当减小,以免遮盖了沟道区。

Constant Profiles	
Profile Name substrate	
Constant Function	
Concentration 4e+015 Species BoronActiveConcentratio	
Evaluation Window	
Decay Error Function	
Decay Factor 0	
Options	
E Replace	
OK	
图 27 衬底掺杂	
Analytical Profiles	×
Name Ichannel Profile Type Gaussian	
Baseline X0 ž2 Y0 ž0 X1 ž4 Y1 ž0	
Gaussian Profile	
Lateral Diffusion Species BoronActiveConcentratio	
Gaussian 🔟 Lateral Factor 10.8	
Concentration	
Peak Concentration	
Standard deviation	
Options	
Evaluate both sides of baseline E Replace Not evaluate baseline	
OK	

图 28 沟道掺杂

Analytical Profiles	×
Name Jsource_N++ Profile Type Gaussian	
Baseline	
X0 1/2 Y0 1/0 X1 1/4 Y1 1/0	
Gaussian Profile	
Lateral Diffusion Species PhosphorusActiveConce	
Gaussian I Lateral Factor 0.5	
Concentration	
Peak Concentration	
Standard deviation Value 0.1	
Options	
Evaluate both sides of baseline Evaluate Daseline Evaluate Daseline	
OK	

图 29 源区掺杂

X Analytical Profiles
Name jsource_P++ Profile Type Gaussian
Baseline
X0 10 Y0 10 X1 12 Y1 10
Gaussian Profile Lateral Diffusion Error Function Lateral Factor 0.8 Concentration
Peak Concentration Image: Im
Options Evaluate both sides of baseline E Replace Not evaluate baseline
OK

图 30 衬底接触掺杂

X Analytical Profiles
Name drainž Profile Type Gaussian
Baseline
X0 0 10 10 X1 8 Y1 10
Gaussian Profile
Lateral Diffusion Species PhosphorusActiveConce V
Gaussian I Lateral Factor 0.8
Concentration
Peak Concentration 🗹 1e+019 Peak Position 2
Standard deviation value 1
Options
Evaluate both sides of baseline E Replace Not evaluate baseline
OK

图 31 漏极掺杂

图 32 掺杂完成后的图形

2.4 产生网格与调整设计

掺杂完成后,我们可以按左边的"Build Mesh"按钮产生离散化网格,同时还能看到掺杂效果,如图 33 所示。这时我们发现,产生的网格和掺杂似乎谁都不认识。这是为什么呢? 这是因为没有定义好离散化网格在器件各个区域的格子大小造成的。

选中左边的"Add Refinement"按钮,确保左边的"Exact Coordinates"项选中,然后按 住鼠标在作图区随便拖一个框,松开鼠标时会弹出配置网格的对话框,就可以设置网格大小 在某个区域的最大值和最小值,同时指定该区域的范围。一般来说,掺杂比较复杂的区域就 应该是格子比较细小的地方,所以我们可以将源、漏、沟道区的格子设置较小,如图 34 所 示。我们还可以根据需要添加多个相同或不同区域的网格大小配置。

设置好格子大小后,再"Build Mesh"一次,这次对得起观众了(如图 35),呵呵。图中红色区域为 N 型掺杂,蓝色区域为 P 型掺杂,颜色越浓掺杂浓度也越高。可以选中左边

的"Show Palette"项查看图例。

图 33 第一次 Build Mesh

Refinement Dimensions	:
Region to refine	
Region Name NoName_1	
X0 Q Y0 Q X1 8 Y1 4	
Maximum and Minimum Values	
Max. Element Width 0.3 Max. Element Height 0.3	
Min. Element Width 0.05 Min. Element Height 0.05	
Refinement Functions	
Add Edit Delete	
OK	

图 34 配置格子大小

图 35 第二次 Build Mesh

到此为止,结构图就完成了,我们在"菜单"一"File"中点击"Save All",就可以保存所有输入和产生 Mesh 网格后的输出文件。建议结构文件取名"mdr.bnd",掺杂和网格配置文件取名为"mdr.cmd",这样默认的文件名以利于其它工具的自动识别。输出文件会根据输入文件名自动命名。

如果对结构不满意,可以点击左下角的"Boundary"按钮退回结构视图修改。如果对掺杂和网格大小配置不满意,可以选中左边的"Show Analytical P."项、"Show Constant P."项或"Show Refinement"项,然后选中"Information"按钮,此时作图区会出现掺杂、网格等标志,鼠标单击就可以显示其具体配置,修改即可。如果要删除某个掺杂或网格配置,选中"Delete"按钮,鼠标单击对应标志就可以将其删除掉。

如果多个标志放在一起,有些标志被覆盖了,需要修改被覆盖的标志的时候,可以在"菜单"一"View"中选择"List Of Profiles"显示所有的掺杂列表,或者选择"List Of Refinements"显示所有的网格配置列表,从中选择对应的项修改即可,如图 36 所示。

图 36 修改设计

3. 器件模拟: Dessis

3.1 模拟输入文件

Dessis 通过一个模拟输入文件(默认为"des.cmd")来设置模拟使用的器件数据、模拟 方法、物理效应、模拟流程等内容。

在"ISE Tool Flow Editer"子窗口中将 Dessis 拖入到左边流程图中(工程"Vt"中已完成)。点击选中左边流程图中的"Dessis"图标,然后点击菜单上的"Edit"—"input"(如图 11),此时弹出子菜单,点击"Commands"项(如图 12),des.cmd 就被打开了。如果打开后内容显示不规整,可以在该工程目录中找到该文件,用写字板打开修改,或者在

设置接触点contact所加的电压,注意这里电极的

```
名称应该与结构图中contact的取名一致
 { Name=source Voltage=0.0 }
 { Name=drain Voltage=0.0 }
 { Name=gate Voltage=0.0 Barrier=-0.55 } Barrier表示栅电极和多晶栅极接触
                                     时有-0.55V的肖特基势垒
}
File {下面的前两行是输入文件名,即第一行为mdr.bnd,第二行为mdr.cmd
     grid = "@grid@"
                     @……@表示由预处理程序指定,这里不用动它,需要了解其
     doping = "@doping@"
                     用法可以参考mannual
     current = "@plot@"
                     后三行为输出文件名
     output = "@log@"
     plot = "@dat@"
  Param = "mos"
                     这里表示使用mos器件的一些预定义参数,即工程所在文件夹
                     需要包含一个文件"mos.par",这在"Vt"中已自带,在别
                     的mos器件模拟时可以拷贝使用。
}
```

```
Physics { 这段是使用的物理模型
Mobility(DopingDep HighFieldsat Enormal) "Vt"采用基于掺杂浓度、高场饱和
的普通迁移率模型
EffectiveIntrinsicDensity(OldSlotboom)
}
```

```
Plot { 下面是需要求解的参数
eDensity hDensity
```

Electrode {

```
eCurrent hCurrent
eVelocity hVelocity
eMobility hMobility
```

```
eQuasiFermi hQuasiFermi
ElectricField
Potential
SpaceCharge
SRH
Auger
AvalancheGeneration
DonorConcentration
AcceptorConcentration
Doping
```

```
Math { 下面是数值计算时的配置
Extrapolate
Derivatives
```

```
Notdamped=50
Iterations=15
RelerrControl
NewDiscretization
```

}

}

```
Solve { 最后是设计过程
 #-initial solution:
 #-a) zero solution
 Poisson
 Coupled { Poisson Electron } 首先在漏极电压为0下用泊松方程模拟。
 #-#-b) ramp drain
 Quasistationary (
                              使用准静态模型,模拟漏极电压从0-VDrain时的情况
   InitialStep=0.05
   MaxStep=0.2
   Minstep=1.e-5
   Goal { Name=drain Voltage=@VDrain@ }
 )
  { Coupled { Poisson Electron } } 只模拟电子运动,不考虑空穴
 #-ramp of gate:
 Quasistationary (
                             使用准静态模型,模拟栅极电压从0-8V时的情况
   InitialStep=0.05
   MaxStep=0.025
   Minstep=1.e-5
   Increment=1.3
```

```
Goal { Name=gate Voltage=8.0 }
)
{ Coupled { Poisson Electron } }只模拟电子运动,不考虑空穴
}
```

3.2 模拟过程

模拟配置文件 des.cmd 配置好后,在"ISE Status Window"子窗口中,点击"Run All" 按钮,弹出对话框询问模拟所用调度器,点击"Yes"即可开始模拟,如图 37 所示。模拟途 中需要中断可点击"Abort"按钮取消。

图 37 模拟过程

模拟完成后,由于"Vt"的模拟流程图中最后包含了 Inspect 工具,所以模拟结束后 Inspect 工具会启动,并根据其配置文件"ins.cmd" 画出对应的曲线图,如图 38 和图 39 所示。我 们将在下一节详细讲述结果的可视化。

图 39 "Vt" 工程输出的第二个 Id-Vg 图

4. 可视化

MOS 器件模拟结果的可视化一般使用两种工具,一种是 Inspect, 它可以显示统计结果

参数的二维曲线,如 I-V 图、C-V 图、I-f 图等;另一种是 Picasso,它可以用不同颜色 显示器件内部各处的电场分布、电势分布、电流分布等信息,方便我们查看器件工作的微观 细节。

4.1 曲线可视化: Inspect

在 GENESISe 中双击图标 "Inspect" 即可打开 Inspect。点击"菜单"-"Load Datasets", 在 "Vt" 工程中选择 "n3_des.plt" 打开模拟结果的统计数据., 如图 40 所示。

在第二栏中选择 "gate", 第三栏会出现很多参数, 选择 "OuterVoltage", 点击下面的 "to X axis", 即将栅极电压放到了 X 轴上, 如图 41 所示。

图 41 放置 X 轴参数

同样,在第二栏中选择"drain",第三栏会重新出现很多参数,选择"TotalCurrent",点击下面的"to Y left axis",即将栅极电压放到了左边 Y 轴上,同时 Id-Vg 曲线也出现了,如图 42 所示。

重新选择别的参数放在Y轴上,可以将多条曲线画在一个图上。

当多条曲线在一个图上而我们需要除去某条曲线时,可以在 Curves 栏中选中它,然后点击下面的 Delete...按钮即可删掉此曲线。

曲线图上方的 Zoom 类四个按钮可以放大或缩小曲线,方便观察;右边的 Scale 类三个 按钮可以将坐标轴在线性坐标和指数坐标间切换。

另外,在菜单中还可以找到使曲线图更美观方便的设置,读者可以参考 mannual 实际操作试验。

图 42 作出 Id-Vg 图

4. 2 分布可视化: Picasso

在 GENESISe 中双击图标 "Picasso"即可打开 Picasso. 点击 "Objects" 按钮,选择 "Load geo...",打开工程 "Vt"的 "n1_mdr.grd" (这是 build mesh 后产生的器件结构网格文件)。 然后再点击 "Objects" 按钮,选择 "Load sim...",打开工程 "Vt"的 "n3_des.dat" (这是 Dessis 模拟后产生的结果数据文件)。最后点击 "Panel" 按钮,选择 "Model",会出现一 个参数表,点其中的一个参数就可以看到其在器件中的分布情况,颜色不同代表了分布值 的不同,可以参看图中的图例,如图 43 所示。使用 View 按钮下的选项可以放大或缩小图 形。左键可以拖动平移图形,右键可以旋转图形 (只在显示三维图形时有意义)。

图 43 电子电流密度分布图